Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer.
نویسندگان
چکیده
Fatty acid synthase (FASN) and ATP-citrate lyase, key enzymes of de novo lipogenesis, are significantly upregulated and activated in many cancers and portend poor prognosis. Even though the role of lipogenesis in providing proliferative and survival advantages to cancer cells has been described, the impact of aberrant activation of lipogenic enzymes on cancer progression remains unknown. In this study, we found that elevated expression of FASN is associated with advanced stages of colorectal cancer (CRC) and liver metastasis, suggesting that it may play a role in progression of CRC to metastatic disease. Targeted inhibition of lipogenic enzymes abolished expression of CD44, a transmembrane protein associated with metastases in several cancers including CRC. In addition, inhibition of lipogenic enzymes and reduced expression of CD44 attenuated the activation of MET, Akt, FAK, and paxillin, which are known to regulate adhesion, migration, and invasion. These changes were consistent with an observed decrease in migration and adhesion of CRC cells in functional assays and with reorganization of actin cytoskeleton upon FASN inhibition. Despite the modest effect of FASN inhibition on tumor growth in xenografts, attenuation of lipogenesis completely abolished establishment of hepatic metastasis and formation of secondary metastasis. Together, our findings suggest that targeting de novo lipogenesis may be a potential treatment strategy for advanced CRC.
منابع مشابه
Signaling and Reduces Metastasis in Colorectal Cancer
Fatty acid synthase (FASN) and ATP-citrate lyase, key enzymes of de novo lipogenesis, are significantly upregulated and activated in many cancers and portend poor prognosis. Even though the role of lipogenesis in providing proliferative and survival advantages to cancer cells has been described, the impact of aberrant activation of lipogenic enzymes on cancer progression remains unknown. In thi...
متن کاملGSK-3β-mediated fatty acid synthesis enhances epithelial to mesenchymal transition of TLR4-activated colorectal cancer cells through regulation of TAp63.
Glycogen synthase kinase-3β (GSK-3β) in cancer cells is a critical regulatory component of both cellular metabolism and epithelial-mesenchymal transition (EMT) processes via regulation of the β-catenin/E-cadherin and phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Lipogenesis of cancer cells also plays a critical role in survival and metastasis. We investigated the role of GSK-3β-mediat...
متن کاملIncreased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration
Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC...
متن کاملFatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway
Fatty acid synthase (Fasn) is the key metabolic enzyme that accounts for the terminal catalytic step in fatty acid synthesis, which is hyperactivated in various tumors. In this study, we depicted that Fasn expression was elevated in human colorectal cancer (CRC), which accordingly led to lymphatic and distant metastasis and a more advanced clinical phenotype. Genetic perturbations demonstrated ...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 72 6 شماره
صفحات -
تاریخ انتشار 2012